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Abstract

In this paper, we introduce the parallel refinement of weakening idempotent

pair and conduct a quantitative matrix analysis for this refinement. Our analysis

shows that this refinement is more effective than the known one when one applies

weakening idempotent pairs to K-theory.
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1. Introduction

Recently, people are interested in weakening idempotent pair, especially its

application in K-theory [1, 2]. Given self-adjoint A+, A− ∈ Mn(C) (or in the

more general setting of C∗-algebra), we call (A+, A−) an (ε-)weakening idem-

potent pair if it holds that

‖(A± −A2
±)(A+ −A−)‖ < ε, (1)

for some small ε > 0. However, it doesn’t necessarily hold that

0 ≤ A+, A− ≤ 1. (2)

If (2) holds, by the formula

Q =

1−A+ κ(A+)

κ(A+) A−

 (where κ(t) =
√
t− t2), (3)
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we obtain an almost projection Q that can be applied to investigate the K-

theory of C∗-algebra [1] or topological space [2]. However, (2) usually fails to

hold, hence we need to modify (A+, A−) so as to get a new pair (B+, B−) that

both satisfies 0 ≤ B± ≤ 1 and preserves the K-theory information in (A+, A−).5

We call this process the refinement of weakening idempotent pair.

It is obvious that such refinement is not unique. For example, A± ∈ C(X,Mmn(C))

are defined in [2] from generalized pairs of cocycles {g±αβ}α,β∈I , which satisfy

that

‖(A+ −A2
+)(A+ −A−)‖ < mε, ‖(A− −A2

−)(A+ −A−)‖ < mε (4)

and

‖A+‖ ≤ m, ‖A−‖ ≤ m (5)

where m = |I|. So, (A+, A−) is an (mε-)weakening idempotent pair.

To refine A±, let f be the function on R given by

f(t) =


0, if t ≤ 0;

t, if 0 ≤ t ≤ 1;

1, if t ≥ 1.

,

and set B± = f(A±), then it is trivial that 0 ≤ B± ≤ 1. It is proved in [2] that

‖(B± −B2
±)(B+ −B−)‖ < 2C(m) 4

√
ε, (6)

where C(m) is a function of the form “2m ln 16m
√

2(m+ 3) 4
√
m”. From the

functional calculus of f over A± and the estimation (6), we can see that B±

coordinate with each other to remain the “idempotent-like” part of A±, hence10

they preserve the K-theory information in A±.

The function C(m) in the estimation inequality (6) is rather big and compli-

cated, partly because B± are achieved separately by the functional calculus of

f so that B± won’t coordinate with each other in (B±−B2
±)(B+−B−) as well

as A± originally do in (A± − A2
±)(A+ − A−). Therefore, instead of applying

the functional calculus of f to A+ and A− each directly, this paper invents a
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new refinement procedure, which step by step removes the non-idempotent part

from A+ and A− simultaneously and finally obtain 0 ≤ C± ≤ 1 such that

‖(C± − C2
±)(C+ − C−)‖ < 6m2/3ε1/3. (7)

Obviously, the estimation (7) is much better than (6), both in the form of C(m)

and the exponential degree of ε. Since A+ and A− are handled simultaneously,

we call this method the parallel refinement of weakening idempotent pair. Quan-

titative matrix analysis details of this method are demonstrated in the following15

section.

2. The parallel refinement of weakening idempotent pair (A+, A−)

Suppose that there are self-adjoint matrices A± ∈Mn(C) such that

‖(A± −A2
±)(A+ −A−)‖ < ε

and

‖A+‖ ≤ m, ‖A−‖ ≤ m.

Step 1. Assume that λ− < 0 and λ+ > 1 are solutions to the equation

λ− λ2 = −
√
ε.

Actually, when ε is sufficiently small, we have λ− ≈ −
√
ε and λ+ ≈ 1+

√
ε. Since

A+ is self-adjoint, we can diagonalize it and suppose that it has the following

form

A+ =

 A+11 0

0 A+22

 ,

where A+11 consists of eigenvalues those are either smaller than λ− or bigger

than λ+, while A+22 consists of other eigenvalues. Consequently, we have

M = A+ −A2
+ =

 M11 0

0 M22

 ,
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where ‖M11‖ >
√
ε. Under the same base, set

N = A+ −A− =

 N11 N12

N21 N22

 .

From the fact that ‖MN‖ < ε and ‖M11‖ >
√
ε, it implies that

‖N11‖, ‖N12‖, ‖N21‖ <
√
ε, (8)

which means that A+11, A+12, A+21 are close to A−11, A−12, A−21, respectively.

By setting the diagonal entries of A+11 those who are smaller than λ− to be 0

and those who are bigger than λ+ to be 1, we obtain A′+. Because of (8), we

can set

N ′ =

 0 0

0 N ′22

 ,

where N ′22 = N22. Then we define A′− = A′+ −N ′, so we have

‖(A′+ −A′2+)(A′+ −A′−)‖ =

∥∥∥∥∥∥
 0 0

0 M22

 0 0

0 N22

∥∥∥∥∥∥ = ‖M22N22‖ < ε.

(9)

Next, we want to estimate ‖(A′− −A′2−)(A′+ −A′−)‖.

Lemma 1. ‖(A′− −A′2−)(A′+ −A′−)‖ < (2 + 4m)ε.

Proof. Since

(A′− −A′2−)(A′+ −A′−) =

 A′−11
−A′−

2

11
0

0 A′−22
−A′−

2

22

 0 0

0 N ′22


=

 0 0

0 (A′−22
−A′−

2

22
)N ′22

 ,

we have ‖(A′−−A′2−)(A′+−A′−)‖ = ‖(A′−22
−A′−

2

22
)N ′22‖ = ‖(A−22−A−

2
22)N22‖.

So we need to estimate ‖(A−22 −A−
2
22)N22‖. Since

(A− −A−2)(A+ −A−)

=

 A−11 −A−
2
11 −A−12A−21 A−12 −A−11A−12 −A−12A−22

A−21 −A−21A−11 −A−22A−21 A−22 −A−
2
22 −A−21A−12

 N11 N12

N21 N22

 ,
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we have

‖(A−21 −A−21A−11 −A−22A−21)N12 + (A−22 −A−
2
22 −A−21A−12)N22‖ < ε.

Hence

‖(A−22 −A−
2
22)N22‖

≤‖(A−21 −A−21A−11 −A−22A−21)N12 + (A−22 −A−
2
22 −A−21A−12)N22‖+

‖(A−21 −A−21A−11 −A−22A−21)N12‖+ ‖A−21A−12N22‖.

We know that ‖A+‖, ‖A−‖ ≤ m, so

‖(A−21 −A−21A−11 −A−22A−21)N12‖

≤(‖A−21‖+ ‖A−21‖‖A−11‖+ ‖A−22‖‖A−21‖)‖N12‖

<(
√
ε+
√
εm+m

√
ε)
√
ε

=(1 + 2m)ε

and

‖A−21A−12N22‖ ≤ ‖A−21‖‖A−12‖‖N22‖ ≤
√
ε
√
ε2m = 2mε.

We conclude that

‖(A−22 −A−
2
22)N22‖ < ε+ (1 + 2m)ε+ 2mε = (2 + 4m)ε.

�20

Step 2. Assume that

A+
′
22 =

 A+
′(11)
22 0

0 A+
′(22)
22

 ,

where A+
′(11)
22 consists of diagonal entries those lie in the closed

√
ε-ball neigh-

borhood of 0 and 1. We know that, when ε is sufficiently small, λ− ≈ −
√
ε and

λ+ ≈ 1 +
√
ε, thus we have

‖A+
′(11)
22 − (A+

′(11)
22 )2‖ ≤

√
ε and

√
ε < ‖A+

′(22)
22 − (A+

′(22)
22 )2‖ ≤ 1/4.
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Assume that

M ′ = A′+ −A′+
2

=

 0 0

0 M ′22

 ,

where

M ′22 =

 A′+
(11)

22
− (A′+

(11)

22
)2 0

0 A′+
(22)

22
− (A′+

(22)

22
)2

 ,

and that

N ′22 =

 N
′(11)
22 N

′(12)
22

N
′(21)
22 N

′(22)
22

 .

It follows from ‖M ′22N ′22‖ < ε that ‖N ′(12)22 ‖, ‖N ′(21)22 ‖, ‖N ′(22)22 ‖ <
√
ε. Suppose

that

A′−22
=

 A′−
(11)

22
A′−

(12)

22

A′−
(21)

22
A′−

(22)

22

 ,

we now need to estimate the spectrum of A′−
(11)

22
.

Lemma 2. Spec(A′−
(11)

22
) ⊆ [−3m1/3ε1/3, 3m1/3ε1/3]∪[1−3m1/3ε1/3, 1+3m1/3ε1/3].

Proof. Since ‖N ′22(A′−22
−A′−

2

22
)‖ < (2 + 4m)ε, i.e.,∥∥∥∥∥∥

 N
′(11)
22 N

′(12)
22

N
′(21)
22 N

′(22)
22

 A′−
(11)

22
− (A′−

(11)

22
)2 −A′−

(12)

22
A′−

(21)

22
A′−

(12)

22
−A′−

(11)

22
A′−

(12)

22
−A′−

(12)

22
A′−

(22)

22

A′−
(21)

22
−A′−

(21)

22
A′−

(11)

22
−A′−

(22)

22
A′−

(21)

22
A′−

(22)

22
− (A′−

(22)

22
)2 −A′−

(21)

22
A′−

(12)

22

∥∥∥∥∥∥
<(2 + 4m)ε,

we have

‖N ′(11)22 (A′−
(11)

22
− (A′−

(11)

22
)2 −A′−

(12)

22
A′−

(21)

22
) +N

′(12)
22 (A′−

(21)

22
−A′−

(21)

22
A′−

(11)

22
−A′−

(22)

22
A′−

(21)

22
)‖

<(2 + 4m)ε.

Hence

‖N ′(11)22 (A′−
(11)

22
−A′−

(11)

22
)2)‖

<(2 + 4m)ε+ ‖N ′(11)22 A′−
(12)

22
A′−

(21)

22
‖+ ‖N ′(12)22 (A′−

(21)

22
−A′−

(21)

22
A′−

(11)

22
−A′−

(22)

22
A′−

(21)

22
)‖

<(2 + 4m)ε+ 2mε+ (1 + 2m)ε = (3 + 8m)ε.
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Assume that there is certain point µ ∈ Spec(A′−
(11)

22
) that lies out of the

closed 3m1/3ε1/3-ball neighborhood of 0 and 1, and that e is a unit eigenvector

of A′−
(11)

22
with respect to µ. Then we have |µ(1− µ)| > 9m2/3ε2/3 and

|µ|2 cos2 ϕ+ |1− µ|2 sin2 ϕ > 9m2/3ε2/3 cos2 ϕ+ 9m2/3ε2/3 sin2 ϕ = 9m2/3ε2/3

for any ϕ ∈ [0, 2π]. By ‖N ′(11)22 (A′−
(11)

22
− (A′−

(11)

22
)2)‖ < (3 + 8m)ε, we have

‖(A′+
(11)

22
−A′−

(11)

22
)(A′−

(11)

22
− (A′−

(11)

22
)2)e‖ < (3 + 8m)ε,

i.e., ‖(A′+
(11)

22
e− µe)‖|µ(1− µ)| < (3 + 8m)ε. Hence,

‖(A′+
(11)

22
e− µe)‖ < (3 + 8m)

9m2/3
ε1/3.

Since the eigenvalues of A′+
(11)

22
lie in the closed

√
ε-ball neighborhood of 0

and 1, we can decompose e as e = ξ + η, where ξ ⊥ η, such that ‖A′+
(11)

22
ξ‖ <

√
ε‖ξ‖ and ‖A′+

(11)

22
η − η‖ <

√
ε‖η‖. Therefore,

‖ − µξ + (1− µ)η‖

=‖A′+
(11)

22
ξ − µξ −A′+

(11)

22
ξ +A′+

(11)

22
η − µη + η −A′+

(11)

22
η‖

≤‖(A′+
(11)

22
e− µe)‖+ ‖A′+

(11)

22
ξ‖+ ‖η −A′+

(11)

22
η‖

<
(3 + 8m)

9m2/3
ε1/3 + 2ε1/2.

From 3m1/3ε1/3 < ‖ − µξ + (1− µ)η‖ < (3+8m)
9m2/3 ε

1/3 + 2ε1/2, we get

1 <
(3 + 8m)

27m
+

2

3m1/3
ε1/6, (m ≥ 1)

which is a contradiction when ε is sufficiently small. So we conclude that the

spectrum of A′−
(11)

22
lies in the closed 3m1/3ε1/3-ball neighborhood of 0 and 1.

�25

Lemma 2 shows that A′−
(11)

22
is close to a projection, which enables us to

apply the functional calculus of f to A′−
(11)

22
.
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Step 3. Apply the functional calculus of f to A′−
(11)

22
. By Lemma 2, we have

‖f(A′−
(11)

22
)−A′−

(11)

22
‖ < 3m1/3ε1/3. SetA′′−

(11)

22
= f(A′−

(11)

22
), A′′− =

 A′′−11
0

0 A′′−22

,

where A′′−11
= A′−11

and A′′−22
=

 A′′−
(11)

22
0

0 A′′+
(22)

22

. By setting the diago-30

nal entries of A′+
(11)

22
those are either smaller than 0 to be 0 and those are bigger

than 1 to be 1, we obtain A′′+. From the construction of A′′+ and A′′−, it is clear

that 0 ≤ A′′+, A′′− ≤ 1. Now it is time to estimate ‖(A′′+ −A′′+
2
)(A′′+ −A′′−)‖ and

‖(A′′− −A′′−
2
)(A′′+ −A′′−)‖.

Theorem 3. ‖(A′′+ − A′′+
2
)(A′′+ − A′′−)‖ < 2ε1/2, ‖(A′′− − A′′−

2
)(A′′+ − A′′−)‖ <35

6m1/3ε1/3.

Proof. Set

M ′′+ = A′′+ −A′′+
2

=

 0 0

0 M ′′+22

 ,M ′′+22
=

 M ′′+
(11)

22
0

0 M ′′+
(22)

22

 ,

where ‖M+
(11)
22 ‖ ≤ ε1/2; and

N ′′+ = A′′+ −A′′− =

 0 0

0 N ′′+22

 , N ′′+22
=

 A′′+
(11)

22
−A′′−

(11)

22
0

0 0

 ,

where ‖A′′+
(11)

22
−A′′−

(11)

22
‖ ≤ 2. Hence

‖(A′′+ −A′′+
2
)(A′′+ −A′′−)‖

=‖M ′′+N ′′+‖ = ‖M ′′+22
N ′′+22

‖ = ‖M ′′+
(11)

22
(A′′+

(11)

22
−A′′−

(11)

22
)‖ ≤ 2ε1/2.

Let P ′′+ = A′′− − A′′−
2

=

 0 0

0 P ′′+22

, where P ′′+22
=

 P ′′+
(11)

22
0

0 P ′′+
(22)

22

.

Since the spectrum of A′−
(11)

22
lies in the closed 3m1/3ε1/3-ball neighborhood of

0 and 1, when ε is sufficiently small, we have ‖P ′′+
(11)

22
‖ < 3m1/3ε1/3. Hence

‖(A′′− −A′′−
2
)(A′′+ −A′′−)‖

=‖P ′′+N ′′+‖ = ‖P ′′+22
N ′′+22

‖ = ‖P ′′+
(11)

22
(A′′+

(11)

22
−A′′−

(11)

22
)‖ < 6m1/3ε1/3.

�
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So far, we have got the parallel refinement (A+
′′, A−

′′) for the weakening

idempotent pair (A+, A−).
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